TDS5034B • TDS5054B • TDS5104B

The World's Easiest to Use Midrange Oscilloscope

MyScope[®] Custom Control Windows

The TDS5000B models offers Tektronix exclusive MyScope customizable oscilloscope user interface. MyScope is a powerful feature that allows you to build your own control windows with only the controls, features and capabilities that you care about and are important in your job. Only with Tektronix oscilloscopes, can you pull all the functionality you need from all the various parts of the oscilloscope into one control window, effectively creating your own personalized "toolbox" of oscilloscope features. No longer do you need to search through menus for features or re-learn how to drive the oscilloscope after a break from the lab. MyScope control windows enable you to spend your valuable time focused on the task at hand rather than navigating menus on your oscilloscope. And creating these custom control windows isn't a long drawn-out or complex process. They are easily created in a matter of minutes using a simple, visual, drag and drop

process. Once created, these custom control windows are easily accessed through a dedicated MyScope button and menu selection on the oscilloscope button/menu bar, just like any other control window. You can make an unlimited number of custom control windows, enabling each person who uses the oscilloscope, in a shared environment, to have their own unique control window. Since the control windows are stored as files on the hard drive, they can easily be transferred to other TDS5000B Series oscilloscopes, or they can even be e-mailed to a coworker around the world when the need arises. MyScope control windows will benefit all oscilloscope users, from eliminating the ramp-up time that many face when returning to the lab after not using an oscilloscope for a while, to the power user who can now operate far more efficiently. Everything you need is found in one control window rather than having to constantly navigate through menu after menu to repeat similar tasks.

Features & Benefits

350 MHz, 500 MHz and 1 GHz bandwidth models

4 channels on all models

Up to 5 GS/s sample rate

Up to 16 M record length

100,000 wfms/s maximum waveform capture rate

MyScope[®] custom control windows enhance productivity

Right-mouse-click menus for exceptional efficiency

OpenChoice[®] platform with Windows 2000 delivers built-in networking and analysis

Small footprint/lightweight

10.4 in. bright display

Standard touch screen on TDS5054B and TDS5104B

Suite of advanced triggers

Communication mask testing

Pass/fail limit testing

Remote viewing and control

E-mail on event

CD-RW Drive

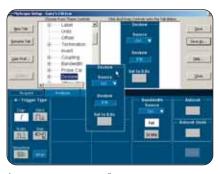
Interoperability with Tektronix logic analyzers

GPIB controller

Applications

Digital design and debug

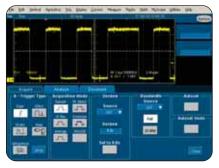
Mask testing for Telecomm/ Datacomm/video standards


Investigation of transient phenomena Power measurements Video design and debug Spectral analysis Automotive electronics Manufacturing test Electro-mechanical Bio-medical Industrial control

► TDS5034B • TDS5054B • TDS5104B

Right-Clicks

The TDS5000B Series also enables a comprehensive suite of right-mouseclick menus make simple things as they should be - simple. Right-click menus are context sensitive, meaning the choices presented in the menu depend on where you right-clicked the mouse. This makes right-click menus extremely intuitive. Want to change the cursor type? Right-click on a cursor or the cursor readouts. Want to change the reference levels of an automatic measurement? Right-click on the measurement. Want to change trigger parameters? Right-click on the trigger readouts. Want to change a waveform's color? Right-click on the waveform handle. Virtually all objects on the oscilloscope display have right-click menus associated with them that include all the appropriate actions or features relative to those objects. There are also right-click menus for regions of the display in addition to just objects. For example, right-clicking in the main graticule brings up a menu with choices such as Clear Data, Default Setup, Autoset, Screen Captures, Save All Waveforms and Add Screen Text, providing single click access to many of your most commonly performed tasks.


 MyScope: MyScope[®] control windows are created using a simple, visual drag and drop process.

The customization and efficiency provided by MyScope control windows and right-click menus make the TDS5000B models the world's easiest to use midrange oscilloscopes, enabling you to achieve levels of productivity you wouldn't have thought possible with your current oscilloscope.

The Performance and Feature Set You Expect

Performance

The TDS5000B digital phosphor oscilloscopes (DPO) delivers 350 MHz, 500 MHz, or 1 GHz bandwidth, 5 GS/s real-time sample rate, up to 16 M record length and a suite of advanced triggers, enabling you to capture and characterize even your most demanding signals.

 MyScope: Once created, they are just like other control windows in the instrument and are easily accessed from either the menu or button bars.

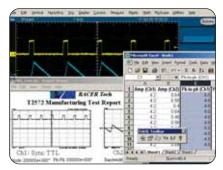
DPOs provide unmatched insight into signal behavior by displaying, storing and analyzing complex signals in realtime using three dimensions of signal information: amplitude, time and distribution of amplitude over time. The TDS5000B DPO models, enabled by Tektronix proprietary DPX[™] acquisition technology, delivers greater than 100,000 waveforms per second capture rates. Some oscilloscope vendors claim high waveform capture rates for short bursts of time, but only DPOs, enabled by DPX technology, can deliver these fast waveform capture rates on a sustained basis - saving minutes, hours or even days by quickly revealing the nature of faults so sophisticated trigger modes can be applied to isolate them.

Elusive Glitch. Fast waveform capture rate, enabled by Tektronix proprietary DPX acquisition technology, maximizes the probability of capturing elusive glitches and other infrequent events.

Advanced Waveform Analysis

The TDS5000B models include a complete parametric measurement system for signal characterization. Select from fifty three automatic measurements using a graphical palette that logically organizes measurements into amplitude, time, combination, histogram and communications categories. Gather further insight into your measurement results with statistical data such as mean, min, max, standard deviation and population. Waveform cursors make it easy to measure traceto-trace timing characteristics, while cursors that link between YT and XY display modes make it easy to investigate phase relationships and Safe Operating Area violations. Define and apply math expressions to waveform data for on-screen results in terms that you can use. Access common waveform math functions with the touch of a button. Or, for advanced applications, create algebraic expressions consisting of waveforms sources, math functions, measurement values, scalars and user adjustable variables with an easy-to-use calculator-style editor.

Applied measurement extensions can be installed to enhance the TDS5000Bs' capabilities. These software applications build on the precision acquisition performance of the TDS5000B Series to address the need for application specific measurements to quickly quantify device and system performance. Optional applications include power measurement and analysis, jitter and timing analysis, disk drive measurements, ANSI/ITU telecom pulse compliance and Ethernet compliance testing.


OpenChoice Architecture

The TDS5000B Series includes open access to the MS Windows 2000 operating environment. While the instrument remains a dedicated oscilloscope, the ability to access the MS Windows desktop creates a powerful tool. Built-in applications such as WordPad, Paint and a Web browser allow you to concurrently maintain lab notes while working with the instrument. This saves time and eliminates error-prone steps associated with transporting images for later report development. Other applications such as Microsoft Word or Excel, MATLAB and LabVIEW can be used with the instrument to accomplish local documentation or signal analysis. Installation of the oscilloscope on the LAN enables Web-based information browsing, e-mail exchange, printing and file sharing. Using the embedded PCI bus, waveform data can be moved directly from acquisition to analysis applications on the Windows desktop at much faster speeds than conventional GPIB transfers.

In addition, the OpenChoice architecture provides a comprehensive software infrastructure for faster, more versatile operations. Data transfer programs, such as the Excel Toolbar, Word Toolbar and Report Generator are used to simplify analysis and documentation on the Windows desktop or on external PCs. Tektronix' implementation of industrystandard protocols, such as TekVISA™ interface and ActiveX Control, are included for using and enhancing Windows applications for data analysis and documentation. These tools enhance your ability to create custom software to automate multi-step processes in waveform collection and analysis with Visual BASIC, C, C++, MATLAB, LabVIEW, LabWindows/CVI and other common **Application Development Environments** (ADE). Integration of the oscilloscope with external PCs and non-Windows hosts is also supported by the TDS5000B Series software solutions. Plug-and-play and IVI instrument drivers are included to enable easy communication with the oscilloscope using GPIB, Serial and LAN connections from programs running on the instrument or an external PC. Applications and other LAN resources, can connect directly over Ethernet using the VXI 11.2 server included on the TDS5000B models.

The unparalleled ease-of-use, coupled with the TDS5000B's performance, OpenChoice platform and comprehensive feature set all in a compact benchtop package, provides exceptional value.

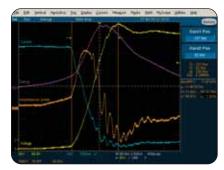
► TDS5034B • TDS5054B • TDS5104B

OpenChoice Platform. Capturing data into Microsoft Excel using the unique Excel Toolbar and then creating a custom report using the Tektronix Report Generator.

Applications

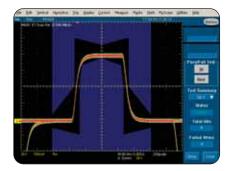
The TDS5000B's performance features make it ideal for a multitude of applications, such as digital design and debug, power measurements, communications mask testing and video design.

Digital Design and Debug


The inter-operability of the TDS5000B oscilloscopes with the Tektronix TLA5000 Series logic analyzer made possible by Tektronix Integrated View (iView[™]) enables digital designers to solve signal integrity challenges and effectively debug and verify their systems more quickly and easily. The iView feature fully integrates the industry-leading performance and measurement accu-

Digital Design and Debug. Tektronix Integrated View (iView) fully integrates the performance and measurement accuracy of a Tektronix oscilloscope with the multi-channel and powerful triggering capabilities of a Tektronix logic analyzer in one display, allowing designers to quickly verify and debug their designs.

racy of a Tektronix oscilloscope with the multi-channel and powerful triggering capabilities of a Tektronix logic analyzer. This integration allows designers to view time-correlated digital and analog data in the same display window and isolate the analog characteristics of the digital signals that are causing failures in their systems. The iView Wizard simplifies this integration of the oscilloscope and logic analyzer by guiding the user through set up and connection. No user calibration is required. And, once set up, the iView feature is completely automated. The result – an integrated tool set for digital design and troubleshooting.


► TDS5034B • TDS5054B • TDS5104B

Power Measurements. Channel 1 (yellow, labeled Voltage) shows the turn-off voltage on the FET of a switching power supply, with current on Channel 2 (blue, labeled Current). The Math 1 waveform, M1 (orange, labeled Power), is the instantaneous power resulting from the multiplication of the voltage and current waveforms (Ch. 1 * Ch. 2). The Math 2 waveform, M2 (purple, labeled Energy), is the result of a calculation of the integral of M1, a math-on-math operation of the TDS5000B models. An energy measurement, located to the right of the display, is a gated measurement made on M1 and includes statistics.

Power Measurements

The TDS5000B's powerful and flexible measurements, math and math-on-math capabilities make them ideal solutions for making power measurements, such as voltage, current, instantaneous power and energy for power device designers.

 Communication Mask Testing. Testing an E1 signal against the mask specified by the standard.

Communications Mask Testing

Option SM provides a complete portfolio of masks for verifying compliance to serial communications standards. Masks are provided for electrical standards. Easily tailor mask testing to your specific requirements using features such as one-button mask autoset, autofit, user adjustable mask margin tolerance, hit counting, failure notifications and built-in mask editing.

Video Design. Illustration of triggering on an analog HDTV tri-level sync signal and examining horizontal blanking interval.

Video Design

Tektronix exclusive DPX acquisition technology sets the TDS5000B Series apart from competitive digital oscilloscopes, enabling the capture of up to 100,000 waveforms per seconds for a live, analog-like display. The TDS5000B models also support a wide variety of video standards with dedicated triggers including NTSC, PAL, SECAM and analog HDTV. In addition, IRE and mV graticules can be selected for easier measurements and visual inspection. All of this together makes the TDS5000B Series an ideal tool for video design and development.

► TDS5034B • TDS5054B • TDS5104B

► Characteristics

Vertical System

	TDS5034B	TDS5054B	TDS5104B
Input Channels		4	
Analog Bandwidth (–3 dB) 5 mV/div to 1 V/div	350 MHz	500 MHz	1 GHz
Calculated Rise Time 5 mV/div (typical)	1.15 ns	800 ps	300 ps
Hardware Bandwidth Limits	150 MHz or 20 MHz		
Input Coupling	AC, DC, GND		
Input Impedance, 1 M Ω	±1%		
Input Impedance, 50 Ω	±1% ±2.5%		±2.5%
Input Sensitivity, 1 M Ω	1 mV/div to 10 V/div		
Input Sensitivity, 50 Ω	1 mV/div to 1 V/div		
Vertical Resolution	8-bits (>11-bits with averaging)		
Max Input Voltage, 1 M Ω	150 V CAT I, \leq 400 V peak, Derate at 20 dB/decade to 9 V _{RMS} above 200 kHz		
Max Input Voltage, 50 Ω	1045		<100 mV/div <1 V _{RMS} ≥100 mV/div <5 V _{RMS}
DC Gain Accuracy	1.5% with offset set to 0 V		
Offset Range, 1 M Ω	1 mV/div to 99.5 mV/div ±1 V 100 mV/div to 1 V/div ±10 V 1.01 V/div to 10 V/div ±100 V		
Offset Range, 50 Ω		9 99.5 mV/div ±1 V iv to1 V/div ±10 V	1 mV/div to 50 mV/div ±0.5 V 50.5 mV/div to 99.5 mV/div ±0.25 V 100 mV/div to 500 mV/div ±5 V 505 mV/div to 1 V/div ±2.5 V
Channel-to-channel isolation for any two channels at equal vertical scale	≥100:1 at ≤100 MHz and ≥30:1 at >100 MHz up to the rated bandwidth		

Timebase System

	All Models	
Timebase Range	200 ps/div to 1000 s/div	
Timebase Delay Time Range	(s/div x 10) to 1000 s	
Channel-to-channel Deskew Range	±75 ns	
Timebase Accuracy	15 ppm	
Delta Time Measurement Accuracy	(0.06/sample rate + 15 ppm x Reading)RMS	
Trigger Jitter (RMS)	8 psRMS (typical)	
Long Term Sample Rate and Delay Time Accuracy	±15 ppm over any ≥1 ms interval	

Acquisition System

TDS5034B	TDS5054B / TDS5104B
5	GS/s
2.5	GS/s
1.25 GS/s	
250) GS/s
8M/4M/2M—	16M/8M/4M
16M/8M/4M	NA
	5 2.5 1.2! 250 8M/4W/2M—

Maximum Duration at Highest Real-time Resolution (1 ch)

	TDS5034B	TDS5054B / TDS5104B
Time Resolution (single shot)	200 ps (5 GS/s)	
Max Duration with Standard Memory	1.6 ms	3.2 ms
Max Duration with Opt. 3M	3.2 ms	NA

Acquisition Modes		
FastAcq Acquisition	FastAcq optimizes the instrument for analysis of dynamic signals and capture of infrequent events	
	Maximum FastAcq waveform capture rate is 100,000 wfms/s	
Sample	Acquire sampled values	
Peak Detect	Captures narrow glitches (<1 ns) at all real-time sampling rates	
Averaging	From 2 to 10,000 waveforms included in average	
Envelope	From 2 to 2x109 waveforms included in min-max envelope	
Hi-Res	Real-time boxcar averaging reduces random noise and increases resolution	
Waveform Database	Accumulates a waveform database that provides a three dimensional array of amplitude, time and counts	
FastFrame [™] Acquisition	Acquisition memory divided into segments; maximum trigger rate >100,000 waveforms per second	

TDS5034B • TDS5054B • TDS5104B

Trigger System

Sensitivity			
Internal DC Coupled	0.35 div DC to 50 MHz increasing to 1 div at rated bandwidth		
External (auxiliary input)	400 mV from DC to 50 MHz increasing to 750 mV at 100 MHz		
Main Trigger Modes	Auto, Normal and Single		
Trigger Sequences	Main, Delayed by time, Delayed by events. All sequences can include separate horizontal delay after the trigger event to position the acquisition window in time		
Standard Trigger Types	Edge, Glitch, Runt, Window, Width, Transition Time, Timeout, Pattern, Video, State, Setup/Hold		
A Event and Delayed B Event Trigger Types			
A Event	All above types		
Delayed B Event	Edge		
Communications-related Triggers (requires Option SM)	Support for AMI, HDB3, BnZS, CMI, MLT3 and NRZ encoded communications signals Select among isolated positive or negative one, zero pulse form or eye patterns as applicable to standard		

Trigger Level Range

Any Channel	±10 divisions from center of screen	
External (auxiliary in)	±8 V	
Line	Fixed at 0 V	
Trigger Coupling	DC, AC (attenuate <60 Hz), HF reject (attenuate >30 kHz)	
	LF reject (attenuates <80 kHz) Noise reject (reduce sensitivity)	
Trigger Holdoff Range	1.5 µs to 12 s maximum	

Trigger Modes

Edge – Positive or negative slope on any channel or front panel auxiliary input. Coupling includes DC, AC, noise reject, HF reject and LF reject.

Video – Trigger on NTSC, PAL, SECAM, analog HDTV and non-standard video formats.

Glitch – Trigger on or reject glitches of positive, negative or either polarity. Minimum glitch width is 1.0 ns with 200 ps resolution.

Width – Trigger on width of positive or negative pulse either within or out of selectable time limits ranging from 1 ns to 1 s with 200 ps resolution.

Runt – Trigger on a pulse that crosses one threshold but fails to cross a second threshold before crossing the first again. Event can be time or logic qualified (logic on four channel models only).

Window – Trigger on an event that enters or exits a window defined by two user-adjustable thresholds. Event can be time or logic qualified (logic on 4 channel models only).

Timeout – Trigger on an event which remains high, low or either, for a specified time period, selectable from 1 ns to 1 s with 200 ps resolution.

Transition – Trigger on pulse edge rates that are faster or slower than specified. Slope may be positive, negative or either. Setup/Hold – Trigger on violations of both setup time and hold time between clock and data present on any two input channels.

Pattern – Trigger when pattern goes false or stays true for specified period of time. Pattern (AND, OR, NAND, NOR) specified for four input channels defined as High, Low or Don't Care.

State – Any logical pattern of channels (1, 2, 3) clocked by edge on channel 4. Trigger on rising or falling clock edge.

Comm (requires option SM) – Support for AMI, HDB3, B3ZS, B6ZS, B8ZS, CMI, NRZ and MLT3 encoded communication signals. Select among isolated positive or negative one, zero pulse form or eye patterns as applicable to standard.

Trigger Delay by Time – 16 ns to 250 seconds.

Trigger Delay by Events – 1 to 10,000,000 Events.

Waveform Measurements

Automatic Measurements – Fifty three of which eight can be displayed on screen at any one time.

Amplitude Related: Amplitude, High, Low, Maximum, Minimum, Peak to Peak, Mean, Cycle. Mean, RMS, Cycle RMS, Positive Overshoot, Negative Overshoot. Time Related: Rise Time, Fall Time, Positive Width, Negative Width, Positive Duty Cycle, Negative Duty Cycle, Period, Frequency, Delay. Combination: Area, Cycle Area, Phase, Burst Width. Histogram Related: Waveform count, Hits in box, Peak hits, Median, Maximum, Minimum, Peak to Peak, Mean (μ), Standard Deviation (σ), $\mu \pm 1\sigma$, $\mu \pm 2\sigma$, $\mu \pm 3\sigma$.

Communications Related: Extinction Ratio (abs, %, dB), Eye Height, Eye Width, Eye Top, Eye Base, Crossing %, Jitter (Pk-Pk, RMS, 6**o**), Noise (Pk-Pk, RMS), Signal/Noise Ratio, Cycle Distortion, Q-Factor.

Measurement Statistics – Mean, Min, Max, Standard Deviation, Population.

Reference Levels – User definable for each of the eight measurements.

Histograms – Vertical or horizontal with linear or log scaling.

Gating – Isolate the specific occurrence within an acquisition to take measurements on.

Cursors – Horizontal Bars, Vertical Bars, Waveform and Screen.

Waveform Processing/Math

Arithmetic – Add, subtract, multiply and divide waveforms.

Algebraic Expressions – Define extensive algebraic expressions including waveforms, scalars, user adjustable variables and results of parametric measurements e.g., (Integral (Ch1-Mean(Ch1)*1.414*VAR1).

Math Functions – Average, Invert, Integrate, Differentiate, Square Root, Exponential, Log 10, Log e, Abs, Ceiling, Floor, Min, Max, Sin, Cos, Tan, ASin, ACos, ATan, Sinh, Cosh, Tanh.

Frequency Domain Functions – Spectral magnitude and phase, real and imaginary spectra.

Vertical Units – Magnitude: Linear, dB, dBm. Phase: degrees, radians, group delay.

Window Functions – Rectangular, Hamming, Hanning, Kaiser-Bessel, Blackman-Harris, Gaussian, Flattop2, Tek Exponential.

Limit Testing – Compare live waveforms against a known "golden" reference waveform with user defined vertical and horizontal tolerances.

Display Characteristics

Display Type – 10.4 in. liquid crystal active-matrix color display.

Touch Screen – Standard on TDS5054B and TDS5104B. Optional Touch Screen on TDS5034B.

Display Resolution – 640 horizontal x 480 vertical pixels.

Waveform Styles – Vectors, Dots, Intensified Samples, Variable Persistence, Infinite Persistence.

Display Format - YT, XY, XYZ.

Color Palettes – Individual color palettes for Record View and FastAcq/WfmDB modes include Normal, Green, Gray, Temperature, Spectral and User Defined.

Computer System and Peripherals

Operating System - Windows 2000.

CPU - Intel Celeron Processor, 2.0 GHz.

PC System Memory – 512 MB

Internal Hard Disk Drive - ≥80 GB capacity.

CD-RW Drive – Side panel CD-RW drive, \geq 24X read and write speed.

Mouse - Optical wheel mouse, USB interface.

OpenChoice Features

TekVISA[™] – Application Programmers Interface (API) for Windows developers. Documentation includes descriptions and samples of programming test and measurement applications on the unit in Visual BASIC, C and C++.

TekVISA Control (TVC) – Active controls to make access to TekVISA easy for integration into Microsoft Windows applications.

VXI-11 Server – An Application Programmers Interface (API) for LAN connectivity from non-Windows environments.

Plug-and-play Drivers – Provides support to run National Instrument's LabVIEW and LabWindows on an external PC connected to a TDS5000B or on the oscilloscope itself. Instrument drivers are version specific and might not support the version of your software development tools.

IVI Drivers – Provides support for new and existing program environments utilizing the IVI instrumentation standard, such as LabVIEW, LabWindows/CVI, MATLAB, Visual BASIC and C/C++. Instrument drivers are version specific and might not support the version of your software development tools.

Excel and Word Toolbars – Provides direct access to screen images, waveform data and measurements on the oscilloscope from a toolbar in Excel and/or Word.

Report Generator – Enables the ability to design and create customized report templates that extract the oscilloscope's waveforms, settings, measurements and other on-screen information with a click of the mouse.

Input/Output Ports

Auxiliary Input – Front panel BNC connector. Trigger level range is adjustable from +8 V to –8 V. The maximum input voltage is ± 20 V (DC + peak AC) and input resistance is ≥ 1.5 k Ω .

Probe Compensator Output – Front panel pins. Amplitude 1 V \pm 1% into a \geq 10 k Ω load, frequency 1 kHz \pm 5%.

Analog Signal Output – Rear-panel BNC connector, provides a buffered version of the signal that is attached to the Channel 3 input (four channel models only). Amplitude: 50 mV/div $\pm 20\%$ into a 1 M Ω load, 25 mV/div $\pm 20\%$ into a 50 Ω load. Bandwidth (typical): 100 MHz into a 50 Ω load.

Auxiliary Output Levels – Rear-panel BNC connector, provides a TTL-compatible, negative polarity pulse when the oscilloscope triggers.

External Reference In – Rear-panel BNC connector. 9.8 MHz to 10.2 MHz.

Parallel Port - IEEE 1284, DB-25 connector.

Audio Ports – Miniature phone jacks for stereo microphone input and stereo line output.

USB Port – Four USB 2.0 ports allow connection or disconnection of USB keyboard and/or mouse while oscilloscope power is on.

Keyboard Port – PS-2 compatible.

Mouse Port - PS-2 compatible.

LAN Port – RJ-45 connector, supports 10Base-T and 100Base-T.

Serial Port - DB-9 COM1 port.

Video Port – DB-15 female connector; connect a second monitor to use dual-monitor display mode. Supports basic requirements of PC99 specification and display resolutions up to 1,920 x 1,440.

GPIB Port – IEEE 488.2 standard, can be configured for talk/listen or controller mode.

Oscilloscope VGA Video Port – DB-15 female connector, connect to show the oscilloscope display on an external monitor or projector.

► TDS5034B • TDS5054B • TDS5104B

TDS5034B • TDS5054B • TDS5104B

Power Source

 $\begin{array}{l} \mbox{Power} \mbox{--} 100 \mbox{ to } 240 \mbox{ V}_{\rm RMS} \ \pm 10\%, \ 47 \ to \ 63 \ Hz; \ CAT \\ \mbox{II, or } 115 \mbox{ V}_{\rm RMS} \ \pm 10\%, \ 360 \ to \ 440 \ Hz. \\ \mbox{Power Consumption} \mbox{--} < 220 \ W. \end{array}$

Physical Characteristics

BENCHTOP CONFIGURATION

Dimensions	mm	in.
Height	361	11.2* ¹
Width	447	17.6
Depth	288	11.35
Weight	kg	lbs.
Net	11.23	24.75
Shipping	25.63	56.5

RACKMOUNT CONFIGURATION

Dimensions	mm	in.
Height	267	10.5
Width	483	19
Depth	231* ²	9.1* ²
Weight	kg	lbs.
Net	13.49	29.75
Shipping	_	_

COOLING

Cooling clearance 76 mm required on left side 3 inches required on left side

*1 Does not include accessory pouch.

*2 From rack mounting rear to back of instrument.

Environmental

Temperature

Operating - +5 °C to +45 °C.

Nonoperating – -20 °C to +60 °C without diskette in floppy drive.

Humidity

Operating – 20% to 80% relative humidity with a maximum wet bulb temperature of +29 °C at or below +45 °C, noncondensing. Upper limit de-rates to 30% relative humidity at +45 °C.

Nonoperating – Without diskette in floppy disk drive. 5% to 90% relative humidity with a maximum wet bulb temperature of +29 °C at or below +60 °C, noncondensing. Upper limit derates to 20% relative humidity at +60 °C.

Altitude

Operating - 10,000 ft. (3,048 m).

Nonoperating - 40,000 ft. (12,190 m).

Random Vibration

Operating – 0.1 GRMS from 5 to 500 Hz, 10 minutes each axis, 3-axes, 30 minutes total.

Nonoperating – 2.0 GRMS from 5 to 500 Hz,

10 minutes each axis, 3-axes, 30 minutes total.

Regulatory Certifications

Electromagnetic Compatibility – 89/336/EEC. Safety – UL61010, CSA-22.2 No. 1010.1, EN61010-1, IEC61010-1.

Ordering Information

TDS5034B

350 MHz, 5 GS/s, 4 channel digital phosphor oscilloscope.

TDS5054B

500 MHz, 5 GS/s, 4 channel digital phosphor oscilloscope.

TDS5104B

1 GHz, 5 GS/s, 4 channel digital phosphor oscilloscope.

Includes: (1) P5050 500 MHz, 10x passive probe per channel, Accessory Pouch (016-1935-00), Front Cover (200-4651-00), Mouse (119-6936-00), Quick Start User Manual, TDS5000B Product Software CD-ROM, TDS5000B Operating System Restoration CD-ROM, GPIB Programmer's Reference, Optional Applications Software CD-ROM, *Getting Started with OpenChoice*[®] book (020-2513-00), Performance Verification Procedure PDF file, Calibration Certificate Documenting NIST Traceability, Z540-1 Compliance and ISO9001 Registration, Power Cord.

Note: Please specify power plug and manual version when ordering.

► TDS5034B • TDS5054B • TDS5104B

Recommended Probes

P5050 – 500 MHz, 10x passive probe.
P6243 – 1.0 GHz active probe.
P6245 – 1.5 GHz active probe.
P6246 – 400 MHz differential probe.
P6247 – 1.0 GHz differential probe.
P6248 – 1.7 GHz differential probe.
P6250 – DC to 500 MHz, 42 V, Differential Probe (requires TCA-BNC adapter).
P6251 – DC to 1 GHz, 42 V, Differential Probe (requires TCA-BNC adapter).

Recommended Accessories

Service Manual – Order 071-1362-00.

Transit Case - Order 016-1937-00.

Probe Calibration, Compensation and Deskew Adapter – Order 067-0405-xx.

Power Deskew Fixture – Order 067-1478-00.

Mini Keyboard - Order 118-9402-00.

USB Test Fixture – Order TDSUSBF.

Ethernet Test Fixture – Order through Crescent Heart Software (www.c-h-s.com).

Instrument Options (Available on all models unless indicated otherwise)

Opt. VNM – CAN bus decode requires ATM1 trigger module.

Opt. 18 - Touch-screen interface for TDS5034B.

Opt. 3M – Increase record length to 16M samples max (1ch.) for TDS5034B.

Opt. 1K – Oscilloscope cart.

Opt. 1R – Rackmount kit.

Opt. SM - Communication mask testing.

Opt. PS1 – Power Bundle that includes TCP202 DC Coupled Current Probe, P5205 High Voltage Differential Probe, TDSPWR3 Power Measurement Software and Power Deskew Fixture.

Opt. CP2*1 – TDSCPM2 – ANSI/ITU telecom pulse compliance testing software.

Opt. ET3 – TDSET3 – Ethernet compliance test software.

Opt. J2*2 – TDSDDM2 – Disk drive measurements software.

Opt. JA3 – TDSJIT3 v2.0 Advanced – Jitter and timing analysis software.

Opt. JE3 – TDSJIT3 v2.0 Essentials – Jitter and timing analysis software.

Opt. PW3 – TDSPWR3 – Power measurements software.

Opt. USB – USB 2.0 Compliance test software only.

*1 Requires option SM.

*2 Not available on TDS5034B.

Power Plug Options

Opt. A0 – North America.
Opt. A1 – Universal Euro.
Opt. A2 – United Kingdom.
Opt. A3 – Australia.
Opt. A4 – 240V North America.
Opt. A5 – Switzerland.
Opt. A6 – Japan.
Opt. A10 – China.
Opt. A99 – No power cord or AC adapter.

Manual Options

- Opt. L0 English Manual.
- Opt. L1 French Manual.
- Opt. L3 German Manual.
- Opt. L5 Japanese Manual.
- Opt. L7 Simple Chinese Manual.
- Opt. L8 Traditional Chinese Manual.
- Opt. L9 Korean Manual.
- Opt. L10 Russian Manual.

Service Options

Opt. C3 – Calibration Service 3 Years.

- Opt. C5 Calibration Service 5 Years.
- **Opt. D1 –** Calibration Data Report.

Opt. D3 – Calibration Data Report 3 Years (with Option C3).

Opt. D5 – Calibration Data Report 5 Years (with Option C5).

Opt. R3 – Repair Service 3 Years (including warranty).

Opt. R5 – Repair Service 5 Years (including warranty).

Instrument Upgrades

Upgrades equivalent to original options can be ordered to extend instrument performance after initial purchase. Users can install upgrades without opening the instrument case or requiring on-site service (except for touch-screen upgrade for TDS5034B). To upgrade, order a TDS5BUP with one or more of the following options: 18, 1K, M03, 1R, SM, CP2, ET3, J2, JE3, JA3, PW3, USB, VNM. Factory installation of selected options is available by ordering option IF on your TDS5BUP upgrade order.

Contact Tektronix:

Digital Phosphor Oscilloscope

▶ TDS5034B • TDS5054B • TDS5104B

ASEAN / Australasia (65) 6356 3900 Austria +41 52 675 3777 Balkans, Israel, South Africa and other ISE Countries +41 52 675 3777 Belgium 07 81 60166 Brazil & South America (11) 40669400 Canada 1 (800) 661-5625 Central East Europe, Ukraine and the Baltics +41 52 675 3777 Central Europe & Greece +41 52 675 3777 Denmark +45 80 88 1401 Finland +41 52 675 3777 France +33 (0) 1 69 86 81 81 Germany +49 (221) 94 77 400 Hong Kong (852) 2585-6688 India (91) 80-22275577 Italy +39 (02) 25086 1 Japan 81 (3) 6714-3010 Luxembourg +44 (0) 1344 392400 Mexico, Central America & Caribbean 52 (55) 5424700 Middle East, Asia and North Africa +41 52 675 3777 The Netherlands 090 02 021797 Norway 800 16098 People's Republic of China 86 (10) 6235 1230 Poland +41 52 675 3777 Portugal 80 08 12370 Republic of Korea 82 (2) 6917-5000 Russia & CIS +7 (495) 7484900 South Africa +27 11 206 8360 Spain (+34) 901 988 054 Sweden 020 08 80371 Switzerland +41 52 675 3777 Taiwan 886 (2) 2722-9622 United Kingdom & Eire +44 (0) 1344 392400 USA 1 (800) 426-2200 For other areas contact Tektronix, Inc. at: 1 (503) 627-7111 Updated 12 November 2007

For Further Information

Tektronix maintains a comprehensive, constantly expanding collection of application notes, technical briefs and other resources to help engineers working on the cutting edge of technology. Please visit www.tektronix.com

Product(s) are manufactured in ISO registered facilities.

Copyright © 2008, Tektronix. All rights reserved. Tektronix products are covered by U.S. and foreign patents, issued and pending. Information in this publication supersedes that in all previously published material. Specification and price change privileges reserved. TEKTRONIX and TEK are registered trademarks of Tektronix, Inc. All other trade names referenced are the service marks, trademarks or registered trademarks of their respective companies. 05/08 HB/WOW 55W-14869-13

